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Abstract. We discuss the possibility that space has to be described as being of non-integer 
dimension. We elaborate on some of the problems associated with this idea and investigate 
the chance to observe effects due to such a fractional dimension. Two experiments allow 
us to derive rather stringent bounds for the deviation of the space dimension from the 
value three. These are the perihelion shift of planetary motion and the Lamb shift in 
hydrogen. 

1. Introduction 

The question we deal with in this paper can be formulated as follows. How do we 
know that the dimension of space D is really three and not, e.g., 3.000 OOOl? The most 
natural answer to this question, namely that non-integer dimensions are inconceivable, 
is not valid. Non-integer dimension is a well defined mathematical concept which may 
be, and, in fact, has been applied to the description of physical phenomena. It shares 
with many concepts of modem physics the property of being accessible to intuitive 
understanding only with considerable effort. 

The question of whether spacetime has to be described as being endowed with 
integer or fractional dimension is a basic problem of conceptual significance. Even 
the mere fact that space can be thought of as being of fractional dimension could lead 
to a deeper understanding, as it demands a physical argument as to why an integer 
dimension should be favoured. 

We want to discuss here two rather different examples of the physical significance 
which can be attributed to the appearance of ‘fractional dimensions’. 

(1) Based on the original suggestion of Kaluza and Klein [ 1,2) many models have 
been developed in the past few years which assume the existence of additional spacetime 
dimensions [3,4], e.g. a total of eleven dimensions. These additional dimensions are 
supposed to be ‘compactified’, which means that one assumes them to be rolled up 
with such a small curvature radius that any excitation in these additional degrees of 
freedom has an energy of the order of 10l6 GeV. With these assumptions it is obvious 
that excitations in the compactified dimensions cannot significantly influence the 
processes at energies attainable today. However it might be possible to detect relics 
of the presence of these underlying dimensions. As an example, let us discuss the 
situation for a harmonic oscillator in D dimensions of which all but three are compac- 
tified. For an oscillator length lo much larger than the curvature radius p of the 
compactified dimensions, its low energy spectrum will be that of a three-dimensional 
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oscillator, whereas for lo<< p the influence of the curvature is negligible and we get, 
e.g. for a model with ten space dimensions, the spectrum of a ten-dimensional harmonic 
oscillator. Obviously the transition between the two extremes will take place smoothly. 
It is then possible to attribute an effective dimension to this spectrum. The precise 
definition of de, is not of importance for our general argument. Nevertheless we want 
to give an illustrative example. Let us assume that the compactification is done by 
closing every auxiliary dimension separately, i.e. that the structure of space is given 
by R 3  x S' x S' x . . . x SI. Then all the space coordinates decouple. With respect to 
any space dimension, one finds a ground state and a first excited state. Let us now 
denote by Ei ,  i = 1,2, .  . . , 10, the energy of the phonon corresponding to an excitation 
in the ith space dimension. Let us furthermore define Emin as the minimum value of 
the E i .  With these definitions one can define de, as 

des( /* )  = E m i n / E i .  (1) 
i 

For lo<< p all space dimensions are equivalent and therefore all the Ei are equal. Thus 
defi becomes the degeneracy of the first excited level in the free ten-dimensional 
harmonic oscillator, which is ten. On the other hand, for lo >> p we have Emin = El  = E2 = 
E3 << E , ,  i = 4, 5 , .  . . , 10 and consequently we find de,  = 3. In general we find 

(i) de, depends on the energy scale, e.g. on the value of lo ,  and 
(ii) de ,  can take arbitrary non-integer values. 
For our example of a harmonic oscillator, for lo >> p the effective dimensions would 

then be of the form 

deR= 3+constant x ( p / A , ) ( p / l o )  ( 2 )  
where A, is the Compton wavelength of the particle considered. 

If one wants to follow these ideas one would thus interpret D as an effective 
parameter and its deviation from three as a consequence of the microscopic higher- 
dimensional structure of space. 

( 2 )  The success of the lattice calculations [ 5 ] ,  especially in connection with lattice 
gauge theories [ 6 ] ,  shows that it is possible to interpret the four-dimensional spacetime 
continuum as the low energy appearance of a discrete lattice with a lattice constant 
which is small compared with distances relevant for physical processes. There do, 
however, exist lattices to which one has to attribute fractional space dimensions [7]. 
Therefore it is by no means clear that space, in the main, is a metric space of exactly 
three dimensions or whether its dimensionality differs, however slightly, from this 
integer value. This idea received an enormous impetus from intensive recent work [8], 
e.g. indicating a close relationship between these fractional dimensions and those 
appearing in the theoretical treatment of phase transitions. We do not want to discuss 
these results here. Instead let us just note the following properties of these lattices. 

(i) The dimension of a 'fractal' point set can take arbitrary non-integer values. 
(ii) If one introduces a finite resolution, e.g. a typical scale lo, into the generalised 

definition of the dimension of a point set, one finds that the space dimension D will 
in general be a function of this resolution. 

Within the framework of this interpretation a non-vanishing value of D = 3 would 
indicate a non-trivial microscopic lattice structure of space. 

There are still more ideas [9] which can be used to motivate the assumption that 
space might have fractional dimension. However, as they are less well established and 
in any case lead to the same qualitative properties as the two interpretations we have 
presented, we will not discuss them. 
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In our contribution we want to elaborate on the arguments of [lo], leading to rather 
stringent limits for the deviation of the D from three for two vastly different length 
scales [ll]. This programme was also motivated by the work of Zeilinger and Svozil 
[ 121 who noted that the current discrepancy between theoretical and experimental 
values of the anomalous magnetic moment of the electron could be resolved if the 
dimensionality of space D is 

(3) D = 3 - (5.3 * 2.5) x io-’. 

The bounds we derive are more stringent and thus would rule out this interpretation 
unless the fractal dimension were entirely timelike. The detailed calculations will be 
presented in § O  3 and 4, while some conceptual ideas and problems are discussed in 0 2. 

2. Some basic ideas 

In our calculations we use the idea of dimensional continuation, well known from the 
method of dimensional regularisation [13]. There one observes that any n-point 
function becomes finite for suitably chosen dimensions of spacetime d = 1 + D. For 
example, for the vacuum polarisation tensor of quantum electrodynamics we obtain 

I I p u ( k , ,  d)=-i(e2/2.rr4) d a  . r r d ” a ( l - a ) M “ - ” / [ - m 2 + a ( l - a ) k 2 ]  

(4) 

lo1 
x U 2  - d/2)(g,,k2 - k,k”) 

which is finite for D=O, 1 and 2. This expression is then continued to arbitrary 
dimensions, and even to non-integer dimensions, just by keeping equation (4) and 
allowing d to be any real number. With d = 4 - E we obtain, in this specific example, 

I I , , ( k ) =  -e2/(27r2) d a a ( 1 - a )  log{.rr[-m2+a(l - a ) k 2 ] / M 2 }  

x( l / s -~) (g , ,k ‘ -k ,k , )+O(~) .  ( 5 )  

We proceed in exactly the same way. We calculate the interesting quantities as functions 
of the space dimension D. These expressions are then continued to arbitrary values 
of D by keeping the analytic expression and allowing D to become non-integer. 

Although this procedure is generally accepted we want to note that it is not clear 
how it can be formulated in a strict mathematical manner. Obviously the continuation 
of equation (1) is not unambiguous. One could, e.g., add a term of the form 

for d = 1 ,2 ,3  (6) 

with an arbitrary function f ( ~ ,  k 2 ) .  This term is zero for all values of d for which the 
expression (4) is well defined. Such a term would lead to an additional contribution 
of the form 

r ( 2  - d/2)kPk,f(4 - d, k 2 )  sin[ ~ ( 4 -  d ) ]  = 0 

(1/ E - y + O( E))k ,k , f (  E ,  k 2 ) ~ &  = k,k, f (0, k 2 )  (7) 
which would arbitrarily change the renormalised vacuum polarisation tensor and even 
violate gauge invariance. One could try to avoid these problems by imposing suitable 
restrictions on IIWv(k,  d )  as a function of d but it is unclear how these restrictions can 
be motivated physically. As we have not found any formulation in the literature which 
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avoids these ambiguities we are left with the feeling that the concept of dimensional 
continuation has been shown to lead to correct results but still waits for a mathematically 
rigorous definition. If these mathematical problems were overcome one could possibly 
even avoid the appearance of divergences in quantum field theory by assuming E # 0. 
This hope is based on the fact that, using the dimensional regularisation scheme, the 
critical contributions are isolated in terms of the form constant E which are finite for 
non-zero E. 

For our calculations we assume in the following, in line with most other studies 
of similar problems, that spacetime has exactly one timelike and an arbitrary number 
D of spacelike dimensions. The basic idea of our argument is to make use of the 
dynamical SO(4) invariance of motion in a l / r  potential. If D differs from three, the 
Coulomb potential of a point source falls off as r(*--O) and the dynamical symmetry 
is broken. This leads to additional contributions to the Lamb shift and the perihelion 
shift of planetary motion. 

The standard experiments to test the l / r  potential are the Cavendish-Eotvos 
experiment for gravitation and the Cavendish experiments for electrostatics. Whereas 
the former leads only to the following bound for D [14]: 

ID -31 c IOw4 for 6 m m < r o < 3 c m  (8) 
(the meaning of I ,  will become clear in §§ 3 and 4), the latter is not able to detect any 
deviation of D from the value three. In fact this experiment tests only the validity of 
Gauss’s law in the absence of charges [15]: 

r 

Assuming gauge invariance, however, this law is fulfilled for any dimension D as both 
the definition of surface and volume integrals and the Coulomb potential VcB change. 
To show this explicitly we use the generalised divergence theorem: 

{ s E . n d a = { v i 3 - E d D v =  i = 1,2,3.  (10) 

Using the expression for the Coulomb potential derived in § 4 we thus obtain for any 
value of D 

Is E. n d a  = 27rD’2(D - 2 ) / r ( D / 2 )  { p ( r )  dDu = 0 (11) 

if p (  I )  = 0. Thus the Cavendish experiment is only sensitive to the presence of mass 
terms or, e.g., self-interaction terms. As we obtain our results by dimensional continu- 
ation of the expressions for integer D this holds true also for non-integer values of Dt. 

V 

3. The perihelion shift in D = 3 + E dimensions 

We start with the perihelion shift in an arbitrary integer dimension D and use a rather 
obvious generalisation of the treatment given in a standard textbook [17] for three 
space dimensions. 

t By measuring the rate of decrease of the apparent intensity of a light source, one obtains ID - 31 < [ 161. 



Bounds for the fractal dimension of space 3895 

The problem we have to solve is that of geodesic motion outside of an O ( D ) -  
symmetric mass distribution. In the framework of the theory of gravity this solution 
is completely determined by the (1 + D)-dimensional metric. Due to the O( D )  symmetry 
the most general ansatz for this metric is [18] 

gpu = diag(e”, -eh, -r2, -r’ sin’ a,, -r’ sin’ 6, sin’ 6’, . . . , 
- r’ sin’ 6, sin’ a 2 . .  . sin’ agD-’) 

with the D-dimensional spherical coordinates r, a,, a2, .  . . , 6 Q D - 2 ,  d. From equation 
(12) it is easy to calculate the Ricci curvature tensor. Only the components Roo and 
RI ,  are non-zero. Thus we only get two equations defining our D-dimensional 
Schwarzschild solution: 

0 = Roo = [-U”/ U’- (U’-A’)/2 - ( D  - l ) / r ] ~ ‘ e ” - ~ / 2  

0 = RI , = U”/ 2 + v’/4 - v’A ’14 - ( D - 1)/ r. 
(13) 

The solution to these equations is 

A = - v  e” = 1 -(2rn/r)(ro/r)D-3 (14) 
ro being a constant length scale. Its value however can be roughly estimated as follows. 

The size of, e.g., the mass of Mercury M,,, is derived from astronomical observations 
using the usual l / r 2  law. In these experiments length scales R typical for the Solar 
System are involved. From equation (14) we see that mmerr M,,,, ro and R are related 
according to 

M m e r =  m m e r ( r 0 / ~ ) D - 3 .  (15) 

(16) 
In other words, if we use for rn the usual masses we have to insert for ro the typical 
length scale at which these masses are measured. In the same way we conclude that, 
for the Lamb shift, ro has to be identified with the typical length scale involved in 
experiments measuring the electric charge. 

Equation (14) determines the Schwarzschild metric for arbitrary integer D 3 2. We 
now have to solve the problem of geodesic motion in this metric, e.g. we have to 
determine the solution of the variational equation 

6 (17) 

where a dot denotes a derivative with respect to the arc length s. The equations of 
motion resulting from this variation are 

d/ds  (-r’ sin’ 6, sin’ 6’ . . . sin2 6,-,&,) = 2r’ cos 6, sin 6, 

We can therefore substitute 

mmer( ro/ r)D-3 = M,,,( R/  r)D-3. 

ds [e”i’ - e-”i2 - rz( &:+ 8: sin’ 6, + . . . 6’ sin’ 6, . . . sin2 8D-’)] = 0 I 
x (sin’ 8, sin’ a2 . . . sin’ 6,-,4f+, + . . . + sin’ 6, sin’ 6, . . . 
x sin‘ a,-, sin’ a,,, . . . sin2 6D-24’)  i = 1,2, .  . . D -2 (18) 

d/ds(e”i)  = 0 

d /ds( r2  sin’ 6, sin’ 6 2 .  . . sin’ 9D-2$) = 0. 

By an appropriate orientation we obtain 

9, = T/2  & = o  i =  1,2 , .  . . , D - 2  
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for some initial s. Then from equation ( 1 8 )  it follows that this holds for any s. Equation 
(19) is the D-dimensional definition of the plane of motion. With this choice we are 
left with only two equations valid in any integer dimension D: 

d/ds(e”i)  = 0 

d/ds(  r 2 d )  = 0 (20) 

e’= 1 - ( 2 ~ 1 / r ) ( r ~ / r ) ~ - ~ .  

with 

The crucial point is that these equations can now be continued to non-integer 
dimensions by allowing D to be any real number. From now on we therefore substitute 
D = 3 - E  and treat E as a real parameter ( I E ~ < <  1 ) .  Following the usual steps equations 
(20) are reduced to 

r2$ = h = constant ( 2 1 )  

U”+ u = ( 3  - E ) m ~ ~ ( u ~ / u ) ~  + ( m /  h 2 ) ( l  - E ) (  u 0 / u ) €  ( 2 2 )  

u = l / r  uo= l / r o .  ( 2 3 )  

u (4) = A + B cos( w 4 )  (24)  

and 

with 

To solve equation ( 2 2 )  we make the usual ansatz for quasi-circular motion: 

and expand equation ( 2 2 )  around u = A :  

A + B ( l  - -U ’ )  cos(w4) = (3 - .s)A2m(uo/A)‘ + ( 1 -  E) (m/h2)(uo/A)‘  

+ B  c o s ( w 4 ) [ ( 3 - ~ ) ( 2 - ~ ) m A ( u ~ / A ) ~  - ~ ( 1  - ~ ) ( m / h ’ A ) ( u , / A ) ‘ ]  

+ O( B’). ( 2 5 )  

I E  log(uo/A)I<< 1 and IEl<< 1 (26) 

A = 3A2m + m/  h2+ O( E )  + O( E log( u O / A ) )  

A = m /  h2+3m3/ h4 

For small values of E ,  more precisely for 

we find 

(27) 

( 2 8 )  

or 

and we obtain for w 

1 - w 2  = 6 m A  - 5 m A ~  - Em/ ( Ah2)  + 6 m A ~  log( u 0 / A )  + O( e2 ,  log( uo/ A ) )  
2 6 ( n 1 / h ) ~  - 5 ( m / h ) ’ ~  - E +6( m/h I2& log( u , /A) .  (29) 

lo-’ the second term is negligible with respect to E for reasonable values 

U’=  1 -6(m/h)’+e 

As 
of U,,. We thus obtain 

or 

w = 1 - 3 ( m / h ) * + ~ / 2 .  
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The perihelion shift per revolution A 4  is thus determined by two contributions, one 
due to relativistic effects and one due to the fractional dimension of space: 

A4 = 2 . r r [ 3 ( m / h ) 2 - ~ / 2 1 = A 4 0 - . r r ~  (31) 

where A c $ ~  is the usual relativistic perihelion shift. As the experimentally observed 
value for A 4  agrees with to within 0.5% for the planet Mercury [19], we finally 
get as a bound for E 

< 5 x 10-31Ar$/rl = (32) 

4. The Lamb shift in D = 3 - E dimensions 

To analyse the consequences of a non-integer dimension for the Lamb shift in hydrogen 
it is necessary to include the spin of the electron, as otherwise one would not be able 
to distinguish between the generalised 2p,/, and 2p3l2 states. It is also advisable to 
include relativistic effects. Although they are negligible in three space dimensions it 
is by no means clear that the changes due to a a non-vanishing E are also small 
compared to the changes in the non-relativistic contributions. Thus to treat this problem 
we can, in principle, start with either a Schrodinger equation including relativistic and 
fine structure terms, or with the Dirac equation. As the spinor structure of the latter 
makes the generalisation to arbitrary dimensions difficult (although not impossible), 
we use the Schrodinger equation. In case the relativistic effects turn out to be important 
we would probably also have to analyse the fully relativistic Dirac equation. 

We proceed as follows. First we generalise the standard treatment of the Lamb 
shift as found in reference [20] to arbitrary integer dimensionality of space D = 3, 4, 
5, . . . . This step requires some group theory to find the higher-dimensional expressions 
for the fine structure term. We are then able to calculate the Lamb shift as a function 
of D: AE = AE(D). This expression can be continued to arbitrary non-integer values 
of D and we evaluate 

A E ( D = ~ - E ) - A E ( D = ~ ) =  - [ ~ A E / ~ D ] D = ~ E .  (33) 
Equation (33) together with the experimental bounds on additional contributions to 
the Lamb shift in hydrogen leads to an upper bound for I E ~ .  

We start with the three-dimensional Hamiltonian 

(H,+ Wl+ w,+ W3)$ = E$ (34) 

with 

H,= -1/(2m)v2+ v V =  - a / r  

W, = V2V/(8m2) 
(35) 

(36) 
W, = -(E - V)*/(2m) (37) 

w,= 1/(2m2r) a v l a r s .  L. (38) 

We start the generalisation to D = 3,4,5, . . . , dimensions with the charge distribution 
p( r )  and the potential V(r). p(r)  is normalised according to 

p(  r) dDr = e (39) 
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and V is the solution of the D-dimensional Poisson equation 

aJaJv= [ 2 . n D / 2 / r ( ~ / 2 ) ] ( ~ - 2 ) r o D - 3 e p ( r )  j = l , 2 , 3  , . . . ,  D. (40) 

p = [ D r ( D / 2 ) / 2 v D / * ] ( e / R D ) B ( R - r )  (41) 

In principle we should use an extended charge distribution like 

for r 2  R 
for r S  R. [DR2 - ( D  - 2)r2]/2RD 

For simplicity however we choose a point charge whenever this does not lead to 
infinities: 

p ( r ) = e s D ( r )  v = -(a/ r)( ro/ r) D - 3 .  (43) 

The generalisation of the angular momenta s =$, L= 1, j = f  and J = i  to higher 
dimensions (named (s ( L =  l),, ( j = ; ) ,  and ( j = i ) D )  is most obvious if one 
uses Dynkin labels to denote the different representations of the group O ( D ) .  One 
has to treat odd and even numbers of dimension separately as the corresponding 
rotation groups belong to different Lie algebras. 

For odd space dimensions D = 2n + 1, n = 1,2,3, . . . , the corresponding algebra is 
B, and the angular momentum states have to be identified with irreducible representa- 
tions of the group as follows [21,22]: 

( L = l ) D + ( l  0 ... 0 0) d im[(L=I) , ]=D 

c,[(j = i ) D ]  = D ( D  +7)/8. (44d) 
We have also listed the dimensions of the representations and the eigenvalues of the 
quadratic Casimir operator C 2 .  

For even space dimensions D = 2n ,  n = 1,2 ,3 , .  . . , the algebra is D,. In this case 
(s = i), and ( j  = $), have to be identified with different irreps: 

( L = l ) D + ( l  0 . . .  0 0) dim[(L= I),] = D c 2 [ ( L =  1)D]= D - 1  (450) - 
n 

( S = i ) D ’ ( O  0 . . .  0 1) dim[(s =i),] = 2(D/2-’) 

c,[(s = + ) D l  = D ( D -  1)/8 

c2[(j = i),] = D ( D  - 1)/8 

(45b) 

(45c) 

(45d) 

( j = f ) , + ( ~  O . . .  1 0) dim[(j  = f),] = 2(D’2-’’ 

(D-1 )  ( j=i) ,+(l  0 . . .  0 1) dim[(j  = :),I = 2‘D/2-1) 

c2[(j =;)Dl  = D ( D  + 7)/8. 
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Inserting these values into the generalisation of 2s - L, namely 

(2s* L ) D =  c 2 [ ( j ) D l - c 2 [ ( s ) D l - c 2 [ ( L ) D I  

we obtain 

Using equation (47) we are able to generalise the Hamiltonian (34) to 

(Ho,D+ W,,D+ WZ,D+ W , , D ) ~ = E @  (48) 

H ~ , ~ =  - 1 / ( 2 m ) ( a S + ( ~ -  l ) / r a r ) +  ~ , [ ( ~ ) , ] / ( 2 m r ~ ) +  v 
with 

(49) 

Wl,D = e/ (8”) 2rD/’ / [ r (  D/2)]( D - 2)rf-’p( r)  

w2,D = - ( E  - V)2/(2m) 

for (2s1/2)D 
{YD- 1)/(4m2r) dV/dr for (2Pl/2)D. w3,D = 

Let us now turn to the eigenvalues of the energy which can be expressed as expectation 
values of the Hamiltonian (48): 

Due to the rotational symmetry, all angular integrals in (53) and (54) can be carried 
out, leaving only radial integrals to be performed: 

E.  1. D = r~ d r r D - l J , D ( r ) H , , D ( r ) J , D ( r )  (55) 

with 

The crucial point is that these integrals can be continued to arbitrary dimensions. We 
indicate this continuation by replacing Ei,D by Ei( D),  etc: 

E i (D)=r ; -D drrD-’f;(D, r )Hi(D,  r)f;(D, r)  (57) 5 
with 

ri-D { dDr rD-’(J(D, r ) )2  = 1 D = real number. (58) 
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As D is very close to three it is sufficient to expand equations (57) and ( 5 8 )  around 
this value. With 

D = ~ - - E  (59) 

we have 

Ei(3 - E )  E Ei(3) - d E i / d D I ~ = 3 &  

d r  r2 ln(r/ro)Ei(J(3, r))’ 

+ 2 d r  r2 df;(D, r)/dDlD=3Ed(3, r )  

+ d r  r2f;(3, r)dHi(D, r)/dD1D,3f;(3, 

I I 
and 

drr’  ln(r/ro)(h(3,  r))’+2 drr2dJ(D, r ) / ~ 3 D I ~ = ~ 5 ( 3 ,  r )  = O .  (61) I I 
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We have approximated the physical extended charge distribution by a point charge in 
equations (63), (65) and (66) 

Inserting the radial functions 

f(2pIl2) = ( 1 / 2 ~ ~ ) ~ / ~ [ 1 -  (r/2a)] e-(+” (67) 

and 

f(2s1,?) = ( 1 / 2 4 ~ ~ ) ’ / ~ r  e-(r’2Q) 

a = l /ma = 5.292 x iop9 cm 

with 

we obtain 

A E ( H 0 , D )  = -ea/12a (70) 

AE( w l , ~ )  = A E (  Ho,D)( a2/8)[4+ 3 log( ro/R)] (71)  

(72) 

(73) 

R / a )  - 11 

( w2,~)  = AE(H0,o)a2[2$( 1 )  - 2 log( ro/ a )  - 81 
4- [ L E  ( HO,D A E  ( WI, D )  -I- AE ( w2,D 4- AE ( w3,D 113 ’/ 8 

AJ!? ( w 3 , D )  = A E  ( H O . D ) ( a  2/8)[2$(2) - 2  log( rO/a) -31. 
For ro> fm the contributions (71)-(73) are less than one per cent of A E ( H 0 , D ) .  
(For ro> fm they are less than ten per cent.) As we discussed earlier that ro has 
to be much larger than these values, we can safely neglect the contributions from W, , 
W, and W, to the Lamb shift. Our result thus becomes 

AE = - 2 . 2 7 ~  eV. (74) 

lAE(exp)-AE(theor)l<0.02 MHz=8.2x lo-” eV (75) 

As the theoretical and experimental values for the Lamb shift agree to within [23,24] 

we get a rather stringent bound for the deviation of the space dimension from the 
value three: 

I E ~ <  3.6 x lo-”. (76) 
We emphasise that this result relies heavily on the experimental verification of 

Gauss’s law, implying that the Coulomb potential differs from the 1/  U law in D # 3 
dimensions. This contradicts the assumptions made by Herrick [25] and Stillinger [26] 
who found no effect of D # 3 in the spectrum of the hydrogen atom. 

5. Conclusion 

We have shown that the dynamical symmetry associated with motion in a l / r  potential 
provides extremely stringent limits for any possible deviation of the number of space 
dimensions D from the integer value three. For length scales of the order of the 
distance Mercury-Sun (6 x lo7 km) we obtained I & (  = ID -31 < and for those of 
the order of the Bohr radius 5 x lo-’’ m we obtained 4 x lo-’’ .  As E should vary 
very slowly as a function of the typical length scales, as long as these scales are large 
compared to 10-30m our second bound rules out the interpretation proposed in 
reference [ 121. There the authors assumed E to be of the order of 5 x lo-’ on a length 
scale characterised by the Compion wavelength of the electron, namely 4 x lo-’, m. 
Apart from this result, we believe that our analysis is rather important for the micro- 
scopic models of spacetime mentioned in § 1. However, much work still has to be 
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done. It should be possible to derive for each of these models the function E ( & ) ,  where 
lo is the typical length scale of a physical problem, and thus to decide whether these 
models are compatible with our bounds. Moreover it is important to find upper limits 
for I E ~  at much smaller length scales (e.g. from the anomalous magnetic moment of 
the muon one obtains < for l O - 2 x  m). 
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